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Abstract
A simple computationally effective method is developed for solving the Ben
Daniel–Duke equations for nanowire semiconductor heterostructures. The
method allows eigenstates and associated energy levels of nanowires with
varying cross-sectional shape and/or varying composition to be obtained, and
is based on expanding the envelope function eigenstates on local eigenstates
of the corresponding cross-sectional problem. In this way, the original partial
differential equation problem is reduced to a set of coupled ordinary differential
equations (this set can to a good approximation be limited to a small number of
coupled equations). In the first part of the paper, the model equation framework
is derived; it can be easily modified to account for a more general set of partial
differential equations. In the second part of the paper, three different cases
of axisymmetrical nanowire problems are analysed in terms of eigenstates and
energy eigenvalues. The cases considered are (a) conical nanowires, (b) a
nanowire with a step in radius, and (c) a conical GaAs/GaAlAs nanowire.
Comparison with computationally more expensive finite-element results on a
two-dimensional domain is made, and good agreement is found.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With recent advances in semiconductor growth technology [1], possibilities of growing
complicated geometrical nanostructures exist [2–6]. In addition, growth-intended simple
geometrical nanostructures in reality suffer from size variations, impurities, dislocations, and
geometry imperfections. As a consequence, there is a need for understanding the influence of
more complicated nanostructure geometries on electron eigenstates and eigenvalues [7, 8]. The
present work derives a simple and often effective computational model for solving Ben Daniel–
Duke models [9] for nanowires with varying cross-sectional shape. Moreover, the method is
easy to implement for more complicated partial differential equation systems. In the first part of
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the paper, the Ben Daniel–Duke model is transformed following a procedure originally due to
Stevenson [10, 11], who used the method to solve problems in electromagnetics and acoustics.
The basis of the model is to expand the envelope function in a set of local basis functions
satisfying part of the differential equation. The benefit of the present model is that for the
lower-lying states only very few (sometimes one to two) local basis functions are needed so
as to obtain the envelope functions and associated energies. In the second part of the paper,
the mathematical model is applied to solve three cases of axisymmetric nanowire geometry
structures in terms of eigenstates and energy eigenvalues: (a) conical nanowires, (b) a nanowire
with a step in radius, and (c) a conical GaAs/GaAlAs nanowire. Comparison with second-order
Lagrangian finite-element method calculations on a two-dimensional domain is provided and
good agreement is found.

2. Theory

Allowing for variations in the effective mass m(z) and the band edge potential V (z) along
the axial direction being the assumed heterostructure stacking direction, the Ben Daniel–Duke
equation for the conduction-band envelope function reads

− ∂

∂z

(
h̄2

2m(z)

∂ψ

∂z

)
− h̄2

2m(z)
�∇2 + (V (z)− E)ψ = 0, (1)

with ψ and E the conduction-band envelope function and its associated energy, respectively.
In this work, �∇2 denotes the two-dimensional (in-plane) Laplacian.

We seek to determine an ordinary set of differential equations in the axial coordinate
following the procedure originally proposed by Stevenson [10, 11]. This is done by introducing
a set of orthonormal eigenfunctions un and associated eigenvalues α2

n defined by( �∇2 + α2
n

)
un = 0, in S(z), (2)

un = 0, on ∂S(z), (3)∫
S(z)

unum = δnm, (4)

where ∂S(z) is the boundary of the cross section S(z) and δnm is Kronecker’s delta (δnm = 1 if
n = m; δnm = 0 if n �= m). Rewriting equation (1), multiplying by un , and integrating over the
cross-sectional area S(z) yields

−
∫

S(z)
un
∂

∂z

(
h̄2

2m(z)

∂ψ

∂z

)
dS − h̄2

2m(z)

∫
S(z)

un �∇2ψ dS + (V (z)− E)
∫

S(z)
unψ dS = 0.

(5)

Next, using that for every z the set of functions un constitutes a complete set of functions for
our problem, the envelope function can be written as

ψ =
∑

n

φn(z)un(z, �r), (6)

where �r are coordinates perpendicular to the z-direction. A few manipulations lead to the
coupled set of ordinary differential equations (ODEs) in the coefficients φn :

− ∂

∂z

(
h̄2

2m(z)

∂φn

∂z

)
−
∑

m

Anm

(
∂

∂z

(
h̄2

2m(z)
φm

)
+ h̄2

2m(z)

∂φm

∂z

)
+
∑

m

Ynmφm = Eφn, (7)

Ynm = − h̄2

2m(z)
Cnm +

(
V (z)+ h̄2

2m(z)
α2

n

)
δnm, (8)
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with

Anm =
∫

S(z)
un
∂um

∂z
dS,

Cnm =
∫

S(z)
un
∂2um

∂z2
dS.

(9)

Here, we have used that

∂

∂z

(
h̄2

2m(z)

∂ψ

∂z

)
=
∑

m

[
∂

∂z

(
h̄2

2m(z)

∂φm

∂z

)
um

+
(
∂

∂z

(
h̄2

2m(z)
φm

)
+ h̄2

2m(z)

∂φm

∂z

)
∂um

∂z
+ h̄2

2m(z)
φm
∂2um

∂z2

]
. (10)

Equations (7) and (8) are the Stevenson equations for the Ben Daniel–Duke model that are
relevant for the case of modulated nanowire structures. It is important to realize that the
model equations above allow for any variation in the nanowire cross-sectional shape with axial
position as well as heterostructure material modulation along the axis.

In order to get an idea about the order of the error involved by restricting the above infinite
set of coupled ODEs to a finite set we turn to perturbative theory in the form introduced by
Löwdin [12]. For simplicity, we discuss the case where the infinite set is restricted to one
single ODE; however, restrictions to larger sets of ODEs can be handled in a similar manner.

Consider the error introduced by solving the single ODE:

− ∂

∂z

(
h̄2

2m(z)

∂φ
(l)
1

∂z

)
− A11

(
∂

∂z

(
h̄2

2m(z)
φ
(l)
1

)
+ h̄2

2m(z)

∂φ
(l)
1

∂z

)
+ Y11φ

(l)
1 = E (0)

1l φ
(l)
1 , (11)

where superscript l distinguishes the different eigenvalues and associated eigenfunctions. First,
we introduce the differential operator D such that equation (7) takes the form

Dφ = Eφ, (12)

where φ = (φ1, φ2, . . .)
T, i.e.,

Dnm = −δnm
∂

∂z

h̄2

2m(z)

∂

∂z
− Anm

(
∂

∂z

h̄2

2m(z)
+ h̄2

2m(z)

∂

∂z

)
+ Ynm . (13)

We next define an unperturbed operator D0 by

[D0]nm =
⎧⎨
⎩
D11 for m = n = 1

−δnm

[
∂

∂z

h̄2

2m(z)

∂

∂z
+
(

V (z)+ h̄2

2m(z)
α2

n

)]
else.

(14)

The remaining part of D is denoted V and will be treated as a perturbation, i.e., D = D0 + V .
According to perturbation theory [12], the error in the energy E (0)

1l is now given by

�E1l =
∑

m �=1,k

〈1l|V |mk〉〈mk|V |1l〉
E (0)

l − E (0)
mk

+ O
⎛
⎝
(

1

E (0)
l − E (0)

mk

)2
⎞
⎠ , (15)

where

〈nl|V |mk〉 =
∫
φ(l)n Vnmφ

(k)
m dz, (16)

and E (0)
mk and φ(k)m are solutions to

− ∂

∂z

(
h̄2

2m(z)

∂φ(k)m

∂z

)
+
(

V (z)+ h̄2

2m(z)
α2

m

)
φ(k)m = E (0)

mkφ
(k)
m . (17)
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Figure 1. Geometry of the conical
nanowire structure.

Table 1. Material parameters used.

Material Effective mass (m0) Band edge (eV)

GaAs 0.067 0
GaAlAs 0.092 0.256

In equation (15), we have assumed that φ(l)1 is a non-degenerate solution to D0. The reason why
Vnm appears in expression (16) is that this element alone couples the eigensolutions of [D0]nn

with the eigensolutions of [D0]mm . Unfortunately, we do not know the size of the 〈nl|V |mk〉
elements in general but obviously the larger E (0)

1l − E (0)
mk is the better our approach will be.

Assuming that u1 is the ground state to the cross-sectional problem, we immediately see that
E (0)

1l − E (0)
mk will be large as long as we have small cross sections, i.e., our approach is less

applicable to structures with larger cross sections as expected. Furthermore, observe that only
energies close to the ground state are expected to be well captured. We shall nevertheless
demonstrate that extending the number of ODEs to three increases the accuracy substantially
when applied to problems where larger cross sections are involved, i.e., problems for which the
radius is comparable to the axial length of the structure.

3. Numerical results and discussions

In this section, we consider three cases of axisymmetric nanowire geometries to demonstrate
the capabilities of the method derived above. The three cases to be examined are (a) conical
nanowire structures, (b) a nanowire step structure with a smooth change in radius, and (c) a
conical nanowire heterostructure. The material used in the first two examples is GaAs while
in the third a GaAs/GaAlAs nanowire heterostructure is considered. Material data used in the
computations are given in table 1. These three cases cannot be handled analytically, thus their
solution using the present model demonstrates the usefulness of the method.

First, consider nanowires with varying radius R(z) given by

R(z) = R0 + αz, (18)

as shown in figure 1. We have made calculations for three different sets of parameters:
(a1) α = −0.15 and R0 = 3 nm, (a2) α = −0.3 and R0 = 6 nm, and (a3) α = −0.6
and R0 = 12 nm. The length of the wire is in all three cases 10 nm. We have chosen these
geometries in order to study how good the method is for wires of different size. To compare we
have also solved the full problem, i.e., solving the eigenvalue problem given in equation (1),
using a second-order Lagrangian finite-element method (FEM). As a solver, we use Comsol
Multiphysics so as to ensure convergence of eigenvalues to within 0.01 meV, and we refine
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Table 2. Energies for the first three envelope eigenstates for the structure shown in figure 1 with
α = −0.15, R0 = 3 nm, and L = 10 nm.

Eigenstate n = 1 (eV) n = 3 (eV) FEM (eV)

Ground state 0.639 0.639 0.639
First excited state 0.929 0.928 0.928
Second excited state 1.251 1.249 1.249

Table 3. Energies for the first three envelope eigenstates for the structure shown in figure 1 with
α = −0.3, R0 = 6 nm, and L = 10 nm.

Eigenstate n = 1 (eV) n = 3 (eV) FEM (eV)

Ground state 0.222 0.222 0.221
First excited state 0.411 0.408 0.408
Second excited state 0.694 0.686 0.685

Table 4. Energies for the first three envelope eigenstates for the structure shown in figure 1 with
α = −0.6, R0 = 12 nm, and L = 10 nm.

Eigenstate n = 1 (eV) n = 3 (eV) n = 4 (eV) FEM (eV)

Ground state 0.104 0.102 0.102 0.102
First excited state 0.276 0.256 0.256 0.254
Second excited state 0.557 0.297 0.297 0.298

the mesh until this accuracy is obtained. The first three computed energy eigenvalues for
the parameter set (a1) using one and three cross-sectional un functions are listed in table 2.
Comparing to the FEM eigenvalues also shown in table 2 we see that for nanowires this small
we get good agreement using only one cross-sectional function. In table 3, we show the first
three eigenvalues for the parameter set (a2). Here we observe that if only one cross-sectional
function is used the energy of the ground state is well captured; however, the energy of the first
excited state shows some deviation, and for the energy of the second excited state it is even
worse. When we use three cross-sectional functions we get agreement with the FEM results
to within 1 meV. The eigenvalues obtained when using the last parameter set (a3) are shown
in table 4. We see that the energy of the ground state is still reasonably well captured using
only one cross-sectional function, but the energy of the first excited state is 22 meV too high,
and the energy of the second excited state is completely wrong. However, when we use three
cross-sectional functions we again get good agreement with the FEM results for all three states.
Hence, we observe that the error introduced using the above method follows the observations
made in the previous section.

Second, consider a nanowire step structure with a varying radius R(z) as follows:

R(z) = R0 + 1

2
(R1 − R0)

[
1 + tanh

(
z − z0

δ

)]
,

R0 = 3.0 nm, R1 = 2.5 nm, δ = 0.1 nm, z0 = 5 nm, (19)

as shown in figure 2. In figure 3 we show the z-dependence of the first two modal contributions
to the first three eigenfunctions. As expected, we see that the main contribution comes from the
first modal function (n = 1). In addition, we see that the number of nodes equals the solution
number minus 1, i.e., the groundsheet has zero nodes, the first-excited state one node, etc. The
ground state is tilted towards the nanowire structure end with the largest radius, i.e., where the
geometric confinement is weakest. The eigenvalues are listed in table 5.

5



J. Phys.: Condens. Matter 19 (2007) 136217 M Willatzen and B Lassen

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

axial position coordinate [nm]

ra
di

us
 [n

m
]

Figure 2. Geometry of the nanowire step structure.

Table 5. First three eigenvalues for the nanowire step structure shown in figure 2.

Eigenstate Energy (eV)

Ground state 0.496
First excited state 0.695
Second excited state 0.971

Table 6. Energies for the first three envelope eigenstates for the GaAs/GaAlAs heterostructure
nanowire with the geometry shown in figure 1. Parameters α = −0.1, R0 = 3 nm, and L = 10 nm
are used and the heterostructure effect on effective mass is shown in figure 4 (a similar behaviour is
imposed for the potential).

Eigenstate n = 1 (eV) FEM (eV)

Ground state 0.618 0.620
First excited state 0.797 0.805
Second excited state 1.024 1.023

Finally, we study a conical GaAs/GaAlAs nanowire heterostructure with geometric
parameters α = −0.1, R0 = 3 nm and L = 10 nm. Instead of assuming a abrupt interface we
use the smooth step function given by

�(z) = 1

2

(
1 + tan

(
z − z0

δ

))
, (20)

with δ = 0.2 nm. We consider a five-layer structure, i.e., the effective mass is given according
to the function shown in figure 4 and the potential has a similar behaviour. In table 6 we
show the first three eigenvalues found using one cross-sectional function and the corresponding
results obtained when employing the FEM. Here we see, that the above method gives good
results also for the case of a heterostructure.
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Figure 3. Plots of the first two modal
contributions (i.e., φ1 and φ2) to the first
three eigenstates (solid—mode 1; dashed—
mode 2) as a function of the axial coordinate
corresponding to the nanowire step structure
shown in figure 2. The upper, middle, and
lower plots are the ground state, the first
excited state, and the second excited state,
respectively.

4. Conclusions

The Ben Daniel–Duke model for semiconductor nanowire heterostructures is solved using a
computational effective method due to Stevenson [10, 11] who originally applied the method
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Figure 4. The functional z-dependence of the effective mass.

to problems in electromagnetics and acoustics. In the first part of the paper, the general
set of coupled ordinary differential equations is obtained from the Ben Daniel–Duke partial
differential equation. Output of the model include the envelope eigenstates and associated
energy eigenvalues. A strong asset of the present method is that only a small number of
coupled ordinary differential equations is needed so as to obtain good accuracy in the solutions.
Moreover, also problems without axisymmetry conditions can be handled and the method is
easily extendable to other partial differential equation problems. In the second part of the
paper, three cases of nanowire structures are analysed in terms of eigenstates and energy
eigenvalues. These include: (a) conical nanowires, (b) a nanowire with a step in radius, and (c) a
conical GaAs/GaAlAs nanowire. Comparison with computationally more extensive second-
order Lagrangian finite-element method calculations on a two-dimensional domain shows good
agreement.
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